1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
#![doc="Methods for solving linear systems of equations
"]


// std imports

// srmat imports
//use error::SRError;
use matrix::matrix::{MatrixF64};
use matrix::traits::{Shape, NumberMatrix,
    MinMaxAbs};
use error::SRError;
use linalg::singularity::*;
use matrix::eo::eo_traits::ERO;


/// A Gauss elimination problem specification
pub struct GaussElimination<'a, 'b>{
    /// The matrix A of AX = B
    pub a : &'a MatrixF64,
    /// The matrix B of AX = B
    pub b : &'b MatrixF64
}

#[doc="Implements the Gauss elimination algorithm
for solving the linear system AX = B.
"]
impl<'a, 'b> GaussElimination<'a, 'b>{

    /// Setup of a new Gauss elimination problem.
    pub fn new(a : &'a MatrixF64, b : &'b MatrixF64) -> GaussElimination<'a, 'b>{
        assert!(a.is_square());
        assert_eq!(a.num_rows(), b.num_rows());
        GaussElimination{a : a , b : b}
    } 

    /// Carries out the procedure of Gauss elimination.
    pub fn solve(&self) -> Result<MatrixF64,SRError> {
        let mut m = self.a.clone();
        m.append_columns(self.b);
        let rows = m.num_rows();
        let cols = m.num_cols();
        // a vector to hold the positions
        //let mut v  = from_range_uint(rows, 1, 0, rows);
        // Forward elimination process.
        for k in 0..rows{
            // We are working on k-th column.
            let rr = {
                // Create a view of the remaining elements in column
                let col_k_remaining = m.view(k, k, rows - k, 1);
                //println!("k={}, col_k_remaining: {}", k, col_k_remaining);
                // find the maximum value in this view
                let (_, rr, _) = col_k_remaining.max_abs_scalar();
                // translate rr to the overall row number
                rr + k
            };
            if rr > k {
                // We need to exchange rows of the submatrix.
                m.ero_switch(k, rr);
                // Lets keep this position change information in record
                //v.ero_switch(k, rr);
            }
            // Pick up the pivot
            let pivot = m.get(k, k).unwrap();
            let mut lower_right  = m.view(k + 1, k, rows - k - 1, cols -k);
            //println!("Pivot: {}", pivot);
            //println!("lower_right: {}", lower_right);
            for r in 0..lower_right.num_rows(){
                let first = lower_right.get(r, 0).unwrap();
                let factor = first  / pivot;
                lower_right.ero_scale_add(r, -1, -factor);
            }
            //println!("m: {}", m);
        }
        // Backward substitution starts now.
        let mut b = m.view(0, self.a.num_cols(), 
            self.b.num_rows(), 
            self.b.num_cols());
        let mut r = m.num_rows() - 1;
        loop {
            let pivot = m.get(r, r).unwrap();
            if pivot == 0. {
                // We have a problem here. We cannot find a solution.
                // TODO: make it more robust for under-determined systems.
                return Err(SRError::NoSolution);
            }
            b.ero_scale(r, 1.0/pivot);
            for j in (r+1)..m.num_rows(){
                let factor = m.get(r, j).unwrap() / pivot;
                b.ero_scale_add(r, j as isize, -factor);  
            }
            if r == 0 {
                break;
            }
            r -= 1;
        }
        //println!("m: {}", m);
        // We extract the result.
        Ok(b.to_matrix())
    }
    
}


#[doc="Implements the forward substitution algorithm for
solving a lower triangular linear system. L X = B
"]
pub fn lt_solve(l : &MatrixF64, b : &MatrixF64) -> 
    Result<MatrixF64, SRError>{
    if !l.is_square() {
        return Err(SRError::IsNotSquareMatrix);
    }
    let n = l.num_rows();
    if n != b.num_rows() {
        return Err(SRError::LRDimensionMismatch);
    }
    debug_assert!(l.is_lt());
    // Create a copy for the result
    let mut b = b.clone();
    for r in 0..n {
        let pivot = l.get(r, r).unwrap();
        if pivot == 0. {
            // We have a problem here. We cannot find a solution.
            // TODO: make it more robust for under-determined systems.
            return Err(SRError::IsSingular);
        }
        for k in 0..r{
            b.ero_scale_add(r, k as isize, - l.get(r, k).unwrap() );
        }
        b.ero_scale(r, 1.0/pivot);
    }
    Ok(b)
}



#[doc="Implements the back substitution algorithm for
solving a upper triangular linear system. L X = B
"]
pub fn ut_solve(u : &MatrixF64, b : &MatrixF64) -> 
    Result<MatrixF64, SRError>{
    assert_eq!(u.num_rows(), b.num_rows());
    assert!(u.is_square());
    debug_assert!(u.is_ut());
    // Create a copy for the result
    let mut b = b.clone();
    let mut r = u.num_rows() - 1;
    loop {
        let pivot = u.get(r, r).unwrap();
        if pivot == 0. {
            // We have a problem here. We cannot find a solution.
            // TODO: make it more robust for under-determined systems.
            return Err(SRError::IsSingular);
        }
        b.ero_scale(r, 1.0/pivot);
        for j in (r+1)..u.num_rows(){
            let factor = u.get(r, j).unwrap() / pivot;
            b.ero_scale_add(r, j as isize, -factor);  
        }
        if r == 0 {
            break;
        }
        r -= 1;
    }
    Ok(b)
}


#[doc="Implements the algorithm for solving the equation LDU X = B
where L, D, U are known (LDU decomposition of A), B is known and X is unknown.
Uses a combination of forward and backward substitutions. 
"]
pub fn ldu_solve(l : &MatrixF64, 
    d : &MatrixF64,
    u : &MatrixF64,
    b : &MatrixF64) -> 
    Result<MatrixF64, SRError>{
    assert_eq!(b.num_rows(), u.num_rows());
    assert_eq!(l.num_rows(), u.num_rows());
    assert_eq!(d.num_rows(), u.num_rows());
    assert!(u.is_square());
    assert!(l.is_square());
    debug_assert!(!is_singular_lt(l));
    debug_assert!(!is_singular_diagonal(d));
    debug_assert!(!is_singular_ut(u));

    let n = l.num_rows();
    // Create a copy for the result
    let mut b = b.clone();

    // Solve forward substitution problem L X = B
    for r in 0..n {
        let pivot = l.get(r, r).unwrap();
        if pivot == 0. {
            // We have a problem here. We cannot find a solution.
            // TODO: make it more robust for under-determined systems.
            return Err(SRError::IsSingular);
        }
        for k in 0..r{
            b.ero_scale_add(r, k as isize, - l.get(r, k).unwrap() );
        }
        b.ero_scale(r, 1.0/pivot);
    }

    // Perform inverse scaling D X = B
    for r in 0..n{
        let factor = d.get(r, r).unwrap();
        b.ero_scale(r, 1.0/factor);
    }

    // Solve backward substitution problem U X = B
    let mut r = u.num_rows() - 1;
    loop {
        let pivot = u.get(r, r).unwrap();
        if pivot == 0. {
            // We have a problem here. We cannot find a solution.
            // TODO: make it more robust for under-determined systems.
            return Err(SRError::IsSingular);
        }
        b.ero_scale(r, 1.0/pivot);
        for j in (r+1)..u.num_rows(){
            let factor = u.get(r, j).unwrap() / pivot;
            b.ero_scale_add(r, j as isize, -factor);  
        }
        if r == 0 {
            break;
        }
        r -= 1;
    }
    Ok(b)
}



/// Validates the solution of linear system
pub struct LinearSystemValidator<'a, 'b, 'c>{
    /// The matrix A of AX = B
    pub a : &'a MatrixF64,
    /// The matrix X of AX = B
    pub x : &'b MatrixF64,
    /// The matrix B of AX = B
    pub b : &'c MatrixF64,
    /// The difference matrix 
    pub d : MatrixF64
}

impl<'a, 'b, 'c> LinearSystemValidator<'a, 'b, 'c>{

    /// Setup of a new Gauss elimination problem.
    pub fn new(a : &'a MatrixF64, 
        x : &'b MatrixF64,
        b : &'c MatrixF64,
        ) -> LinearSystemValidator<'a, 'b, 'c>{
        assert_eq!(a.num_rows(), b.num_rows());
        LinearSystemValidator{a : a , 
            x : x, 
            b : b, 
            d : &(a * x) - b}
    }

    pub fn max_abs_scalar_value(&self)-> f64{
        self.d.max_abs_scalar_value()
    }

    /// Validates the equality Ax = b subject to maximum
    /// absolute error being less than a specified threshold.
    pub fn is_max_abs_val_below_threshold(&self, threshold: f64)-> bool{
        self.max_abs_scalar_value() < threshold
    }

    /// Printing for debugging
    pub fn print(&self){
        println!("a: {}", self.a);
        println!("x: {}", self.x);
        println!("ax: {}", self.a * (self.x));
        println!("b: {}", self.b);
        println!("diff: {}", self.d);
        println!("max abs diff: {}", self.max_abs_scalar_value());
    }
}




/******************************************************
 *
 *   Unit tests follow.
 *
 *******************************************************/

#[cfg(test)]
mod test{
    use super::*;
    use matrix::constructors::*;
    use matrix::traits::*;

    #[test]
    fn test_ge_0(){
        let a = matrix_cw_f64(2,2, &[1., 4., 2., 5.]);
        println!("{}", a);
        let b = vector_f64(&[3.0, 6.0]);
        let x = GaussElimination::new(&a, &b).solve().unwrap();
        println!("{}", x);
        assert_eq!(x, vector_f64(&[-1., 2.]));
        let lsv = LinearSystemValidator::new(&a, &x, &b);
        assert!(lsv.is_max_abs_val_below_threshold(1e-6));
    }

    #[test]
    fn test_ge_1(){
        let mut a = from_range_cw(3, 3, 1.0, 100.0);
        let x = from_range_cw(3, 1, 1.0, 100.0);
        // a above is rank-2.
        a.set(2,2, 11.0);
        let b  = &a * &x;
        println!("A: {}", a);
        println!("x: {}", x);
        println!("b: {}", b);
        let ge = GaussElimination::new(&a, &b);
        let z = ge.solve().unwrap();
        println!("z: {}", z);
        /*
        TODO: have better understanding of
        the roundoff error.
        In this case, it is greater than
        1e-15.
        */
        let lsv = LinearSystemValidator::new(&a, &x, &b);
        assert!(lsv.is_max_abs_val_below_threshold(1e-6));
    }  

    #[test]
    fn test_ge_2(){
        let a = matrix_cw_f64(3,3, &[1., 0., 0., 
            -1., 1., 0., 
            1., 1., 1.]);
        let b = vector_f64(&[1., 1., 1.]);
        let ge = GaussElimination::new(&a, &b);
        let x  = ge.solve().unwrap();
        println!("a: {}, x: {}, b: {}", a, x, b);
        // answer is [0, 0, 1]
        let lsv = LinearSystemValidator::new(&a, &x, &b);
        assert!(lsv.is_max_abs_val_below_threshold(1e-6));
    }

    #[test]
    fn test_ge_3(){
        let a = matrix_cw_f64(3,3, &[2., 4., -2., 
            1., -6., 7., 
            1., 0., 2.]);
        let b = vector_f64(&[5., -2., 9.]);
        let ge = GaussElimination::new(&a, &b);
        let x  = ge.solve().unwrap();
        println!("a: {}, x: {}, b: {}", a, x, b);
        // answer is [1, 1, 2]
        //assert!(false);
        let lsv = LinearSystemValidator::new(&a, &x, &b);
        assert!(lsv.is_max_abs_val_below_threshold(1e-6));
    }

    #[test]
    fn test_ge_no_solution(){
        let a = matrix_cw_f64(2,2, &[1., 4., 2., 8.]);
        println!("{}", a);
        let b = vector_f64(&[3.0, 6.0]);
        let result = GaussElimination::new(&a, &b).solve();
        match result {
            Ok(x) => {
                println!("{}", x);
                assert!(false);
            },
            Err(e) => println!("{}", e),
        }
        
    }

    #[test]
    fn test_ut_0(){
        let l = matrix_rw_f64(2, 2, &[
            1., 1.,
            0., 1.]);
        let x = vector_f64(&[1., 2.]);
        let b = &l * &x;
        let x = ut_solve(&l, &b).unwrap();
        let lsv = LinearSystemValidator::new(&l, &x, &b);
        lsv.print();
        assert!(lsv.is_max_abs_val_below_threshold(1e-6));
    }

    #[test]
    fn test_lt_0(){
        let l = matrix_rw_f64(2, 2, &[
            1., 0.,
            1., 1.]);
        let x = vector_f64(&[1., 2.]);
        let b = &l * &x;
        let x = lt_solve(&l, &b).unwrap();
        let lsv = LinearSystemValidator::new(&l, &x, &b);
        lsv.print();
        assert!(lsv.is_max_abs_val_below_threshold(1e-6));
    }


    #[test]
    fn test_lt_1(){
        let l = matrix_rw_f64(4, 4, &[
        1.0, 0.0, 0.0, 0.0,
        2.0, 1.0, 0.0, 0.0,
        3.0, 1.0, 2.0, 0.0,
        1.0, 1.0, 1.0, 1.0
        ]);
        let x = vector_f64(&[1., 2., 3., 4.]);
        let b = &l * &x;
        let x = lt_solve(&l, &b).unwrap();
        let lsv = LinearSystemValidator::new(&l, &x, &b);
        lsv.print();
        assert!(lsv.is_max_abs_val_below_threshold(1e-6));
    }


    #[test]
    fn test_lt_2(){
        let m = from_range_rw_f64(10, 10, 1., 200.);
        let x = vector_f64(&[1., 2., 3., 4., 5., 6., 7., 8., 9., 10.]);
        let l = m.lt();
        let b = &l * &x;
        let x = lt_solve(&l, &b).unwrap();
        let lsv = LinearSystemValidator::new(&l, &x, &b);
        lsv.print();
        assert!(lsv.is_max_abs_val_below_threshold(1e-6));
    }



}



/******************************************************
 *
 *   Bench marks follow.
 *
 *******************************************************/

 #[cfg(test)]
mod bench{
}